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Cross-link–induced autophobicity in polymer melts:
A re-entrant wetting transition

T. Kerle, R. Yerushalmi-Rozen and J. Klein

Department of Materials and Interfaces, Weizmann Institute of Science
76100 Rehovot, Israel

(received 22 July 1996; accepted in final form 21 February 1997)

PACS. 68.45Gd – Wetting.
PACS. 68.15+e – Liquid thin films.
PACS. 61.25Hq – Macromolecular and polymer solutions; polymer melts; swelling.

Abstract. – We have investigated the wetting behaviour of a polymer melt on top of a cross-
linked network of itself. For substrate films that were not cross-linked at all (or at very low
cross-link densities) the melt completely wets the underlying layer. At intermediate cross-linking
densities we observe dewetting, which we suggest is due to the brush-like surface of the network.
At higher cross-linking densities the melt again completely wets the network, due, we believe, to
increased roughening of the surface of the cross-linked substrate.

Polymer networks are important in technological applications ranging from microelectronics
to membrane filtration to controlled drug release. One of the methods which may be used
for creating a polymer network is based on cross-linking the polymer by exposing it to ion-
beam irradiation; the effect of this on bulk properties such as diffusion coefficient, cross-link
density, solubility and rheological behaviour has been thoroughly investigated [1]-[5]. Much
less is known about the effect of cross-linking on interfacial properties. Related problems of
a polymer liquid in contact with a substrate covered by a densely grafted brush or diblock
copolymer lamellae of identical chemical structure were recently studied theoretically [6], [7]
and experimentally [8]-[10]. An interesting theoretical prediction is that a melt of “infinitely”
long chains which is forced to spread into a thin film on top of a surface-attached polymer brush
will dewet to form droplets of finite contact angle. This phenomenon termed “autophobicity”
was observed experimentally for diblock copolymer subphases [9]. Here we report the wetting
behaviour of a polymer melt on a cross-linked network of itself. We find autophobicity to be
a sensitive function of the crosslink density —the melt wets the substrate for both low and
high cross-link densities, but dewets at intermediate densities. Further we are able to study
independently the extent of free-chain/cross-linked matrix interdiffusion, which shows that even
in the regime of dewetting at the interface linear chains may diffuse into the matrix.

The polymers studied were statistical random copolymers of ethyl-ethylene (EE) and ethylene
(E) monomers, with mean microstructure (C4H8)0.14(C2H3)0.86

|
(C2H5)


N

. (1)

The chains were synthesized via anionic polymerization of the precursor, unsaturated polybu-
tadiene (PBD) chains, of polydispersities below 1.08. The precursor samples were divided
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and each half was subjected to hydrogenation or deuteration (to provide 2H labeling where
required) to the saturated state [11]. In this way the samples within the saturated pair had
identical degrees of polymerization. The degree of polymerization was N = 1520, molecular
weight MW = 8.5 × 104 and degree of deuteration fD = 40% (for the case of the deuterated
batch). Samples were kindly donated by Dr. Lewis Fetters.

Polymer layers were prepared by spin casting the polymer from toluene solution (40 mg
polymer per ml toluene) onto polished silicon wafers. The resulting thickness was controlled by
the spin-casting rotation frequency and was in the range of 200–600 nm. After thorough drying
these layers were cross-linked by exposing them to a uniform flux of high-energy (1.2 MeV)
alpha particles (4He) from a Van de Graaff accelerator [12]. The overall ion fluence was
controlled by varying the exposure time t. Films appeared optically smooth before and after
irradiation. AFM scans of the surfaces, however, indicate clearly that over smaller scales the
cross-linking induces a roughness whose extent increases at higher cross-linking times [13]. Two
sets of experiments were carried out: A set of diffusion experiments designed to characterize
the properties of the cross-linked matrix, and a set of experiments designed to characterize the
wetting properties of the cross-linked matrix/melt interface.

In the diffusion experiments 250 nm thick films of the hydrogenated polymer (h86) were
spin-cast on the silicon wafer and then cross-linked by exposing them to the beam for different
time intervals t = 8 s, 16 s and 1 min, equivalent to fluences of 1.9 × 1013, 3.8 × 1013 and
1.5 × 1014 ions/cm2, respectively. A second layer of deuterated polymer (d86) was similarly
spin-cast on a piece of freshly cleaved mica, floated off in water and then mounted upon the first
cross-linked film to cover it and form a bilayer. The thickness of this second overlay film was
120 nm. The bilayers were annealed under vacuum (p = 5× 10−3 Pa) for 12 h at T = 80 ◦C.
To monitor the diffusion of d86 into the h86 matrix, d86 concentration vs. depth profiles
were measured using D(3He, p)4He nuclear-reaction analysis (NRA), as described in detail
elsewhere [14], [15]. Figure 1 shows typical d86 composition-depth profiles. A non–cross-linked
control sample (fig. 1 a)) shows complete interdiffusion of the d86 and h86 polymers [16], [17].
Cross-linking times as short as 8 s (equivalent to 1.9 × 1013 ions/cm2) suppress significantly
the interdiffusion of the free chains into the matrix. The modification of the interdiffusion rate
between free and cross-linked polymer was already reported by other authors [2], [4], [5]. As
the degree of cross-linking is increased, the matrix becomes progressively less penetrable for
the deuterated marker chains. The transition from penetrable to non-penetrable matrix has
already occurred by the time the matrix was cross-linked for 1 minute (equivalent to 1.5×1014

ions/cm2 of exposure to the ion beam). Control measurements carried out at elevated annealing
temperatures and times indicate that the interdiffusion of free chains into the cross-linked matrix
is suppressed for radiation dosages above 1 min. Calcagno et al. [2], who observed a similar
effect in a different polymer system, relate this remarkable drop in interpenetration to a change
of solubility of the cross-linked material. In the limit of low cross-link densities non–cross-linked
chains of the matrix polymer can diffuse out of the matrix, enabling chains from the overlay
film to diffuse counter-current into the matrix. For higher radiation dosages, such that each
chain has at least one cross-link, nearly no chains diffuse out of the matrix —so, non-diffusing
chains have to swell the matrix, which causes a large entropy loss, opposing the diffusion [18].

For the characterization of the wetting properties of the cross-linked matrix/melt interface
a double-layer configuration was again chosen. On 500 nm thick layers of cross-linked d86,
300 nm thick layers of non–cross-linked d86 were floated. The bilayers were then annealed
under vacuum (5 × 10−3 Pa) for 12 h at an elevated temperature of T = 120 ◦C [19]. Visual
inspection of the samples exposed to different cross-linking times reveals that samples where
the underlying layer of d86 was cross-linked for times in the range 4–32 s the polymer melt
dewets on top of the cross-linked film. Samples which were cross-linked for 1 min or longer
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Fig. 1. – Volume fraction vs. depth profiles for d86 melt on cross-linked h86 layers after annealing
under vacuum (5 × 10−3 Pa) for 12 h at T = 80 ◦C, as recorded by NRA. a) shows the case of a
non–cross-linked control sample. The two layers interdiffused completely, resulting in a homogenous
distribution of d86 over the whole sample. In the other cases the layer was cross-linked for b) 8 s, c)
16 s and d) 1 min.

show no signs of rupture or dewetting. In fig. 2 we present bilayers where the matrix was not
cross-linked (a), cross-linked for t = 8 s (b) and t = 1 min (c). Figure 2 d) shows a phase
contrast micrograph of the ruptured area of the sample presented in fig. 2 b). While the films
on top of the non–cross-linked sample (fig. 2 a)) and the 1 min cross-linked sample (fig. 2 c))
are flat and homogeneous, macroscopic holes are clearly visible in the film on top of the matrix
which was cross-linked for only 8 seconds (fig. 2 b), d)). In the case of the non–cross-linked
sample one expects complete interdiffusion of the two layers, similar to the case shown in
fig. 1 a). Control experiments on the effects of longer cross-linking times up to several minutes
of the matrix, elevated annealing temperatures and longer annealing periods up to 2 weeks
at 120 ◦C always showed a stable polymer melt layer wetting the matrix. Use of different
isotopic combinations made no difference to these observations. These results indicate clearly
that the wetting properties of the polymer melt on top of a cross-linked matrix depend on
the degree of cross-linking. A re-entrant wetting transition is observed: No cross-linking (or
very slight cross-linking) results in complete wetting and interdiffusion, intermediate degrees
of cross-linking lead to dewetting of the melt, while a high degree of cross-linking again induces
complete wetting.

Our experimental findings may be related to a recent theoretical treatment of wetting of a
polymer brush melt by a melt of the same polymer [6]. The model describes the spreading of
a P -mer on a surface covered by a brush of densely grafted N -mers with identical monomers
(i.e. athermal conditions). The basic assumptions of the model are that the density Σ−1 of
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Fig. 2. – Images of bilayers where the matrix was a) not cross-linked, b) cross-linked for 8 s and c)
cross-linked for 1 min after annealing under vacuum (5× 10−3 Pa) for 12 h at T = 120 ◦C. d) shows
a phase contrast micrograph of the ruptured area of the sample presented in b). While the films on
top of the non–cross-linked sample a) and the 1 min crosslinked sample c) are flat and homogeneous
(characteristic of complete wetting), macroscopic holes are visible in the film on top of the matrix
which was cross-linked for 8 seconds (b), d)).

the grafted layer (Σ = area per brush chain) is high enough to form a stretched brush even
in the absence of a solvent. In order to determine if the equilibrium state is wetting or partial
wetting the theory compares the gain of melt translational entropy which favours the swelling
with the loss of conformational entropy due to the stretching of the grafted chains. Enthalpic
interactions are neglected by the model. Qualitatively, one expects that for short P -mers and
long N -mers the brush will be solvated and complete wetting is favoured. The other extreme
favours partial wetting only. In terms of the effective spreading parameter S complete wetting
is expected for S > 0 (S may be viewed as the change in free energy due to a unit change in
the area of the wetting film). The model gives the spreading parameter as

S = −γAM + γAB − γBM − kBT
[ A
λa
−
Bλ

Pa3

]
, (2)

where γAM, γAB and γBM are the surface tensions, respectively, at the air/melt, air/brush and
brush/melt interfaces. The terms in the square brackets account for the loss of conformational
entropy of the brush and the gain of translational entropy of the melt, where a is the Kuhn
length of the polymer, A and B are constants of order unity, and λ = (12/π4)1/3(NaΣ)1/3.
The model indicates that a crossover between complete and partial wetting will occur for melt
chain lengths P � P ∗, where

P ∗ = (NΣ/a2)2/3 . (3)

Complete wetting is expected for P � P ∗, and partial wetting for P > P ∗.
Figure 3 shows sketches of the interfacial area between the two layers. In the non-cross-linked

case (fig. 3 a)) chains can interdiffuse freely between the two layers. Cross-linking pins the
chains in the layer (fig. 3 b), c)). Chain ends and loops can stick out of the matrix, but
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a b c

Fig. 3. – Schematic representation of the interfacial area between the two layers. In the non–cross-
linked case a) chains can diffuse freely from the lower into the upper layer. Cross-linking pins the
chains in the layer (b), c)). Chain ends and loops are pinned by the cross-links within the matrix,
forming a brush-like surface. Higher degrees of cross-linking reduce both the effective length N of the
brush “hairs”, and the mean area per “hair” Σ.

are anchored at the cross-link points, forming in this way a surface reminiscent of a brush
melt (with cross-linked loops acting as pseudo-“hairs” on the brush). By varying the degree
of cross-linking we decrease the effective chain length between two cross-link points, and so
also the length of the “hairs” and the area Σ per “hair”. Using now expression (3) from the
Leibler model, this implies that P ∗ decreases with increasing cross-link density. A change from
complete wetting (when no cross-linking or when very slight cross-linking occurs, so that the
cross-linked chain moieties are not overlapping) to partial wetting, is predicted as the cross-link
density increases, as is indeed observed.

The second crossover back to complete wetting cannot be described by the model. We
suggest that, as indicated by our AFM data, this second crossover occurs because the surface
of the matrix gets rougher as the cross-linking density gets higher. This leads to an increased
surface area of the cross-linked polymer (our “brush”), by a factor α say. Thus when the melt
on top of the cross-linked polymer spreads, so that the smooth air/melt interface changes its
area by A say, the cross-linked-polymer/melt and cross-linked-polymer/air interfaces (which
are rough) change by an area αA. The influence of this on the spreading parameter is such as
to make it

S = −γAM + α(γAB − γBM)− kBT
[ A
λa
−
Bλ

Pa3

]
. (4)

The first term γAM is unaffected by the roughening, since it is due to the air/melt interface
which remains smooth. The second term corresponds to the energy changes resulting from
the increased surface area α (> 1) of both the air/brush (γAB) and the brush/melt (γMB)
interfaces. The final square brackets is the Leibler term. It should be mentioned that with
increasing cross-linking density also N and Σ decrease and so the last (negative) terms of
eq. (4) increases; but we expect this change to be small compared with the increase of other
roughness-related term (see below). We also expect the increase in roughness to change the
magnitude of the two terms in the square brackets (in rather a complicated fashion), but
once again the magnitude of these changes is expected to be small and has not been included
explicitly.

The essential point concerns the magnitude of the different terms in (4): γAM and γAB are
very similar to each other, and are easily the dominant terms in S. In comparison to them,
both γMB and the Leibler term (in the square brackets) are negligible, with or without the
roughness factor α. For the case where there is no roughness, as in eq. (2) (α = 1), γAM and
γAB largely cancel each other and then the smaller terms (in particular the Leibler term) are
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important (and can lead to dewetting). But where α > 1, the dominant part of eq. (4) is
the difference (αγAB − γAM), which is positive and which for large enough α swamps all the
other terms. Hence S > 0 and the polymer melt spreads. This simple picture of the effect
of higher cross-linking via the associated effect of roughness accounts for the second crossover
from dewetting (S < 0) to wetting (S > 0).

To conclude, we find that wetting of a cross-linked network by a melt of similar chains
depends on the degree of cross-linking. When cross-linking is absent or very low the chains
interdiffuse and no dewetting occurs. At higher cross-linking times we observe dewetting, which
we suggest is due to the brush-like surface of the network. At the highest cross-linking time
the melt again wets the network, due to increased roughening of the surface of the cross-linked
material.
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