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Abstract 

Preparation of mesoporous materials in a thin film geometry was first reported in 1996. Recently, improvement of the 
preparation methods yielded stable films with well-defined symmetries, controlled pore orientation, continuity and film 
thickness. The ability to tailor film properties is important for their utilization in applications ranging from catalysis to 
microelectronics, where morphological control in the meso-domain is vital. 0 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Ordered mesoporous materials have attracted at- 
tention since their discovery by Mobil Oil Research 
and Development scientists in 1992 [1,2]. The class of 
materials with typical pore size in the range of 2-50 
nm was named MCM (Mobil Composition of Matter), 
and each symmetry class was designated by a numeri- 
cal code, e.g. hexagonal (MCM-40, bicontinuous 
cubic (MCM-48), lamellar (MCM-50). Mesoporous 
materials form when inorganic oxides (e.g. silica) 
polymerize in the presence of surfactants, which serve 
as structure directing agents for the oxide framework. 
Different types of surfactants, including triblock copo- 
lymers may be used as templating agents [3-7"]. 
Features such as structure, composition, pore diame- 
ter, pore volume and surface area can be tailored by 
the inorganic source material, molar composition, the 
template type and the condensation/hydrolysis 
process. The formation of the porous matrix is then 
followed by removal of the organic template either by 
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incineration at elevated temperatures ('calcination') 
or by liquid extraction. 

The technological potential of mesoporous materi- 
als for chemical separations and heterogeneous catal- 
ysis were recognized with their discovery [P I .  A large 
experimental effort lead to the development of a 
multitude of synthetic methods and a variety of tem- 
plating moieties. In addition to their high applicabil- 
ity, mesoporous materials offer a fascinating field for 
the investigation of molecular behavior in confined 
geometries [9']. 

An important feature of mesoporous materials is 
their ability to form thin films. While originally syn- 
thesized to yield bulk materials, methods for prepara- 
tion of mesoporous materials in a thin film configura- 
tion at a thickness range of nanometers to micro- 
meters were recently reported. The motivation for 
synthesis of Mesoporous Thin Films (MTF) originates 
from the appreciation of their technological potential 
as membranes [So], sensors [lo], surfaces for hetero- 
geneous catalysis [lo], and last but not least, insulat- 
ing layers of low dielectric constant for microelectron- 
ics [ll]. For all the above applications a thin film 
geometry is essential. 

Mesoporous materials are rigid solids and as such 
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cannot be easily shaped into thin films at the post- 
synthesis stage. Thus, the reactive mixture has to be 
deposited as a thin film, or the synthesis conditions 
should favor the formation of a thin interfacial layer. 
In the second case formation of bulk material com- 
petes with the growth of thin films. MTFs are charac- 
terized by bulk properties such as symmetry, pore 
diameter, surface area and stability, as well as 
parameters which become relevant in a thin film 
geometry. These include pore alignment with respect 
to the interfacial plane, film thickness, continuity and 
surface roughness. MTFs were characterized by a 
variety of techniques. A thorough description of the 
characterization techniques is beyond the scope of 
this review, and may be found in the literature 
[1,2,12-14].l 

The review focuses on the description of advanced 
methods for preparation of MTFs. We classified the 

'The most commonly used methods are: Small Angle X-ray 
Scattering (SXXS), which provides quantitative structural informa- 
tion at length scales from 2 to 100 nm, Gas adsorption-desorption 
isothems which measure the surface area, total pore volumes and 
pore size distributions [14,15.], Transmission Electron Microscopy 
(TEM), which supplies qualitative information on the structure of 
the MTF, with sub-nanometer resolution both in face-on and 
edge-on (cross-section) projection, with an effective field of mi- 
crometers to nanometers. TEM is also useful for the investigation 
of the structure and level of organization of particle-filled meso- 
porous materials. Surface structure of MTFs at different length 
scales, ranging from micrometers to Angstroms, can be measured 
by Optical Microscopy with micrometer resolution, and Atomic 
Force Microscopy [16-181, with nanometric resolution. Fluorescence 
[19-211, X-Ray reflectivity [22.,23], acoustic wave [21], SEM 
[15.,16,24], FTZR [14,25-271 are all valuable tools. 

methods according to the substrates or surfaces and 
their role in the preparation process. In Fig. 1 the 
organization of the review is presented schematically. 
In addition MTFs which are embedded with nanopar- 
ticles are described briefly. 

2. Preparation of mesoporous thin films 

2.1. Free standing mesoporous thin films 

MTFs were produced at air-water [ 16,23,28-31'1 
and oil-water interfaces [32] (Fig. 1). In both cases, 
the films were observed to grow by the transport of 
material from the solution towards the interface. Films 
at the air-water interface were grown from a homo- 
geneous solution of the reactants (after hydrolysis) in 
the water phase, while for growth of films at the 
oil-water interface, the water-insoluble silica source 
was positioned in the oil phase. 

The thickness of the films formed at air-water 
interface ranges from tens of nanometers to several 
micrometers [24,301 depending on the growth period, 
surface-to-volume ratio of the reaction vessel, solu- 
tion acidity [24] and the concentration of the silica. 

Surface structure and properties of the resulting 
films were found to depend on the nature of the 
interfacial interactions. Specifically, it was observed 
that films grown at the air-water interface exhibit 
surface roughness (root mean square value, rms) in 
the range of 0.2 nm at the air-side, and a much larger 
roughness at the water side [30]. It was concluded that 

Synthesis pathways of MTF 

/ 1 Supported 
Free-standing - -nolayer supported 

122*' Growth / Lted 
ic) 

eT@:Eca 

Oil-water 
interface / Air-water /'\ 

interface 
[16,23,24, 1321 
29,30,31*, 
701 

Dip-coating Spin-coating Coated and 
[7**,15*,19, [27,28,45,46*, dried or 

Floating Flow Immersed 20,21,28,43, 47,48,75,761 casting 
support [37,38*,711 support 73*, 741 
[10,17,34, [351 77*, 781 
36**,39**, 
40,41**,72] 

[28,45,67, 

Fig. 1. Summary of different preparation methods of MTF. 
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the films nucleate around hemi-micelles of surfactant 
located at the air-water interface and grow by co- 
aggregation of the surfactant and silica into the water 
phase. 

The first films obtained at the air-water interface 
exhibited hexagonal pore symmetry with the pores 
aligned parallel to the interface. This orientation is 
the more probable one, as it results from aggregation 
of micelles in the interfacial plane, rather than in the 
direction normal to the interface. However, this ori- 
entation reduces the accessibility of the pores to guest 
molecules, and thus their usage in applications such 
as catalysis. Pore-accessibility is highly enhanced in 
structures which possess three-dimensional symme- 
tries (e.g. bicontinuous cubic, Ia3d) and by pore align- 
ment in the direction normal to the interface. The 
former was achieved by the use of gemini surfactant 
(two-tailed surfactants separated by a spacer) as the 
templating moiety resulting in a three-dimensional 
hexagonal phase (P6,/mm) [29,33]. These films were 
stable upon calcination [291. Another research group 
[31'] used glycerol or polyethylene glycol to stabilize 
micellar cubic phase (these films were not calcined). 
Films formed at the oil-water interface exhibited 
hexagonal symmetry with the pores oriented perpen- 
dicular to the interface [32]. 

The presence of a lipid monolayer at the air-water 
interface was found to accelerate the formation of 
MTFs due to interactions between the lipid head- 
groups and the surfactant and silica aggregates [22']. 
These films may be considered as 'semi-supported'. 

2.2. Solid supported mesoporous thin films 

MTFs were formed on different types of solid sup- 
ports by a variety of preparation methods (Fig. 1). The 
methods may be classified by the role played by the 
surface in the growth process. Thus, we distinguish 
between surfaces which nucleate MTF growth, and 

SiO, oligomers + 

c 

surfaces which are coated by the film. In the first case 
film growth is slower than the latter. 

2.2.1. Films grown on supports 
The first attempt to grow films on a solid support 

(Fig. 1) was reported by Yang et al. [34]. The films 
were grown on mica, and exhibited hexagonal order- 
ing with the pores aligned parallel to the support (Fig. 
2). Typical film thickness varied from 0.2 to 1 pm for 
growth periods of 1 h to 1 week, respectively. The 
films could be prepared also on hydrophobic, amor- 
phous and stainless steel [35] supports. The specific 
interactions of the surfactant molecules with the sup- 
port were observed to affect the structure of the 
resulting films. For example, surfactant molecules that 
form hemi-micelles on hydrophobic surfaces and 
spheroidal or elongated micelles on hydrophilic sur- 
faces induced growth of MTFs with different struc- 
tures: MTFs grown on mica (hydrophilic, crystalline) 
were distorted hexagonal [17], while those grown on 
graphite (hydrophobic, crystalline) consisted of rigid 
parallel strips [17]. In both cases the pores were 
aligned parallel to the surface. In MTFs grown on 
amorphous supports [171 the pores were aligned per- 
pendicular to the support and the film exhibited dis- 
torted hexagonal packing. Moreover, it was observed 
that films grown on crystalline substrates exhibited 
in-plane orientational ordering of the surfactant rods. 
On graphite [10,17] and mica [17,34] the surfactant 
rods were parallel to the c-axis of the support. Yet, it 
was found that crystalline surface is not sufficient for 
inducing preferential orientation [36"]: for thin film 
growth on single-crystal silicon wafers, preferred ori- 
entation was observed only on (110) wafers, probably 
due to the higher anisotropy of this plane.2 

Microsize alignment could also be obtained by 
macroscopic actions: i.e. directional flow (Fig. 1) of 
the reagent solution [37,38'], or covering the original 
substrate with ordered polymer thin film [39"]. Alter- 
natively, rubbing of a substrate covered with amor- 
phous polymer film [40,41"] resulted in ordering of 
the polymer chains and induced MTF orientation. 

2.2.2. MTFs formed by coating 
Conventional methods for thin film formation, i.e. 

spin- and dip-coating, were applied for preparation of 
MTFs. In these methods an oligomeric solution of 
silica is prepared prior to the addition of surfactant. 
In many cases, coating is carried from a solution 

pore 
silica 
substrate 

Fig. 2. Mechanism of MTF formation at support-water interface 
(adopted from Ogawa [46']). 

*This type of surface induced orientation is often described as 
'epitaxial growth. However, the authors of this review find this 
term misleading as it implies crystallographic matching between the 
pore structure and the crystalline structure of the substrate, which 
does not exist here. 
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containing a highly volatile liquid so as to enhance 
the rate of film formation by rapid solvent evapora- 
tion. Preparation of thin films by sol-gel techniques 
was reviewed by Brinker et al., some of them excluded 
MTFs [42] and others included them [43,44]. 

2.2.3. Spin-coating 
MTF formation by spin-coating was first reported 

by Ogawa [45]. The films were found to be stable 
upon calcination with surface area greater than 1000 
m2/g. A few years later the same author inferred that 
the pores of the hexagonally ordered film are parallel 
to the substrate [46',47] (similar to films grown on 
support or at air-water interface). The pore diameter 
could be controlled by surfactant chain-length as in 
bulk materials. In MTFs with lamellar ordering, sil- 
ica/surfactant ratio was found to control the wall 
thickness of the silica [48]. This dependence is unique 
to MTFs and was not reported for bulk mesoporous 
materials. 

Macroscopic cracks which were observed in films 
prepared by spin-coating could be prevented by pre- 
treatment of the glass support with aluminium hy- 
droxide [27]. It was suggested that the pretreatment 
invokes covalent bonds between the film and the 
substrate, and thus improves the adhesion of the film 
to the support. 

While quite a few successful attempts to produce 
spin-coated MTFs were reported, detailed characteri- 
zation of surface parameters of the films, as well as 
their continuity and microstructure were only 
discussed by Martin et al. [28]. In this work, base 

catalyzed hydrolysis of silica was used while in most of 
the reported studies acidic conditions were employed. 

With the exception of spin-coating, formation of 
mesoporous materials by different methods was inves- 
tigated in situ: dip-coating [19-21,431, film growth [231 
or bulk [49-551. 

2.2.4. Dip-coating 
The formation of dip-coated films was monitored in 

situ using fluorescence measurements. The structure 
of the surfactant [19-21,431 and silica frameworks [19] 
were investigated in situ, while interferometry was 
employed for measuring the film thickness [20,21]. 
Solvent evaporation which increases the concentra- 
tion of the solution to above the critical micellization 
concentration (CMC) value [20,21] was found to in- 
duce mesophase formation during the coating process 
itself [21]. At the same time, the thickness of the film 
continuously decreases [20,21]. 

Different symmetries in dip-coated films were re- 
ported: one-dimensional hexagonal [20,21] (pores par- 
allel to the surface), two- and three-dimensional hex- 
agonal [15',21], lamellar [20,21] and cubic [15',21], 
depending on the initial surfactant concentration 
[15',21] and surfactant type [15']. It was found that 
surfactants with a large polar headgroup lead to the 
formation of materials with three-dimensional 
symmetries [15'1. 

While the materials described above have the pore 
diameter less than 4 nm, Zhao et al. used triblock 
copolymers [7"] to produce thin films with accessible 
pores up to 9 nm in diameter. 

SiO monomers 

polymerized silica 

Fig. 3. Schematic presentation of eMTF formation. 
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2.3. Mesoporous silica films with metal nanoparticles 

An additional aspect of MTFs is their use as a 
hosting matrix for nanoparticles. Embedding of 
nanoparticles into thin films (eMTF) (Fig. 3) opens a 
new field of applications, which rely on quantum size 
effects of the confined particles. During the last 
decade it was found that magnetic ferrosmectic [561 
and metallic [57] nanoparticles can be incorporated 
into lamellar [581 as well as hexagonal [591 liquid 
crystalline phases (LCP). In the ordered phases, the 
efficiency of embedding was maximal when the parti- 
cle diameter (in the range of 3-10 nm) was smaller 
(approx. 60%) [59] than the relevant liquid crystalline 
spacing. In other studies the particle size could be as 
large as the interlayer spacing [57]. LCP spacing could 
be enlarged via swelling [59], and thus enables the 
incorporation of larger particles. 

It was recently demonstrated for bulk mesoporous 
material that it is possible to embed Fe,O, [60] or 
GaN [61°] nanoparticles by impregnation. Pre-formed 
nanoparticles of Pt or Pd capped by triblock co- 
polymer [62'] were embedded in the pores of the 
bulk mesoporous material during the templating 
process [62']. CdS nanoparticles capped by small- 
molecule surfactants were introduced into the pre- 
formed mesoporous material at the post-synthesis 
stage [63]. 

The publications mentioned above are few exam- 
ples of mesoporous hybrids of silica matrices embed- 
ded with particles which were prepared in the bulk. A 
procedure involving impregnation of nanoparticles 
within dip-coated MTF was applied recently to silver 
[64"] nanoparticles. The eMTF could be used as 
insulator or as conductor [65]. 

MTFs can be 'embedded' by the templating 
molecules themselves: functionalization of the surfac- 
tant molecule could result in enhanced conductivity 
[65] or improved catalytic activity [66]. Swelling the 
templating micelles with hydrophobic functional 
molecules is yet a different way to prepare optically 
active MTF (addition of functional silane derivative) 
[67] or new laser fibers (addition of rhodamine) [68]. 
Since one could include a wide range of nanoparti- 
cles, the nature of the mesoporous material could be 
controlled by the formation of such hybrid system. 

Trapping or coating of molecules over the meso- 
porous channels [69], as well as loading of framework 
molecules are beyond the scope of this review and will 
not be described here. 

3The dielectric constant of silicon oxide is k = 3.9-4.2, that of 
mesoporous silicas is k < 2. 

3. Conclusions 

Since their discovery, mesoporous materials were 
the subject of a large scientific effort, aiming towards 
better understanding of their formation, structure and 
the origin of their activity, leading to judicious utiliza- 
tion of MTFs in a variety of technological applica- 
tions. In this review we surveyed the large variety of 
methods which are currently applied for the prepara- 
tion of MTFs. The different protocols are distin- 
guished by the way they impose the formation of a 
thin film. These could be a large surface-to-volume 
ratio of the reactive solution, limited reservoir of 
material or a strong effect of surface forces leading to 
orientational ordering. MTFs obtained by the differ- 
ent preparation methods are commonly characterized 
by hexagonal ordering with pores oriented parallel to 
the interfacial plane and high surface area. The MTFs 
are distinguished by the degree of continuity, pore 
alignment and surface roughness. 

We envisage that the production of mesoporous 
materials in a thin-film geometry will lead to their 
integration in advanced applications. For example, 
MTFs can replace non-porous silicon-dioxide as the 
standard insulating layers in nanoelectronics: porosity 
reduces the dielectric constant of the material relative 
to that of silicon oxide: while retaining the high 
thermal stability, good mechanical properties, low ion 
contents and additional properties that have made 
silicon oxide the ultimate material for isolating layers. 
The ability to functionalize the films and trap 
nanoparticles within the pores opens new possibilities 
for application as sensors, non-isotropic conductors, 
and matrices for optically, magnetically and electri- 
cally active materials. We believe that in the near 
future, a whole wealth of new applications for MTFs 
and eMTFs will emerge, together with a better under- 
standing of their formation and control of their struc- 
ture and properties. 
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