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SUMMARY 

This paper deals with possible approaches to optimization 

of maintenance strategy of complex systems. It is based on the 

experience with Aircraft systems and their elements, but the 

methodology can be applied to any industry. 

It is well known that Preventive Maintenance applied 

instead of (or in addition to) Corrective Maintenance may 

increase Reliability yet influencing expenses: cost of 

maintenance and downtime losses. Optimization of Preventive 

Maintenance Plan can lead to considerable savings and 

improve profitability of equipment users. 

Two main approaches based on available data for system 

elements are used for the optimization of the Preventive 

Maintenance: 

• Traditional statistical approach, based on the reliability 

characteristics of the population of items, 

• PHM approach, based on measureable parameters of the 

individual items. 

The paper considers both approaches, their advantages 

and disadvantages, and proposes improvements to them. 

According to the traditional statistical approach, cost and 

efficiency of Preventive Maintenance depend on the 

Inspection/Replacement Intervals (IRI). Shorter IRI means 

higher reliability and less downtime penalties, but higher 

maintenance cost. Consequently, the task of selection of the 

optimal value of IRI taking into account trade-offs between 

two components of the Total Operational Cost: maintenance 
cost and operational penalties/losses, is of great interest. This 

paper suggests a model and a numerical method to evaluate 

Reliability distribution parameters of Aircraft items and a way 

of using these parameters for further optimal selection of IRI 

value.  

The optimization uses a loss function of a special type 
which takes into account asymmetry of losses due to 

premature and late replacement, non-linearity of the Target 

Function, etc. 

PHM approach is based on estimation of Remaining 

Useful Life (RUL) of Aircraft items, by means of advanced 

Prognostic Methodology resulting in Optimization of 

Preventive Maintenance. Most traditional models of PHM do 

not take into account specific characteristics of a loss function. 

A unique model of PHM has been developed, implementing 

Critical Zone Recognition to see whether Remaining Useful 

Life (RUL) of the item exceeds predefined critical value, i.e. 

entering the predefined critical zone (instead of traditional 

RUL calculation using regression). The model is based on the 

Support Vector Classification (SVC) approach, adjusted to the 

proposed loss function. 

1 INTRODUCTION 

Service and maintenance cost for every product-in-use is 

one of the major contributors and significant appraising 

factors of warranty charges and service budget. On the other 

hand, maintenance cost is closely related to the product 

reliability. Ability to control the behavior of the reliability 
function and consequently - the capability of ILS elements 

optimization (spare parts, test and support equipment, 

manpower, training, etc.), depends in its turn upon appropriate 

forecast of probable reliability deterioration and is crucial for a 

the product cost-effectiveness and competitiveness.  

From the contractual point of view, incompliance with a 
guaranteed availability/dispatch reliability targets may invoke 

contractual penalties and even loss of future business.  

Airplane consists of a great number of subsystems and 

components, all being a subject to fail; therefore a typical task 

for such a System of Systems development is Reliability, 

Maintainability and Availability Analysis performed in order 
to decide about an efficient maintenance policy, especially the 

relationship between proactive, preventive and reactive 

activities.  

Preventive Maintenance (PM) is known to be efficient 

only for equipment which is subject to deterioration, i.e. with 
increasing failure rate, and can be inspected periodically. So 

the question is how to choose an optimal value of inspection 

interval and the right time for performing a specially defined 

PM with suitable accuracy and consistency. 

 Every Maintenance Action (MA) can be categorized as 

one of the following three types: 

• Inspection (Inn). Is used to identify the equipment 

conditions of hidden failures. After an Inn, based on a 

system’s condition, either preventive maintenance is 

performed, or no action is taken. 

• Corrective Maintenance (CM). Is used to restore a system 

after a failure to initial status and so it does not depend on 

inspections. 

• Preventive Maintenance (PM). Is used to restore a system 

to initial state before failure, according to inspection 

result. 

For various systems, two alternatives are possible: 
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• Current operating state of a system can be identified by 

measureable critical parameters. The deterioration status, 

when the parameter exceeds the predefined control limit, 

is interpreted as a critical violation (failure). We use the 

term "critical", as we consider violations causing the 

necessity of an item's overhaul or replacement. Critical 

parameters can be measured during inspections. An 

example could be a tire protector depth. Preventive 

maintenance is replacement of the tire, if this depth is too 

low. Such tasks are known as PHM (Prognostics and 

Health Management) and they are considered in many 

articles (see, e.g., [1–3, 11-13]). 

There is no critical parameter, or values of this parameter 

cannot be measured. Under this assumption we have to 

suppose, that following an inspection, restoration is 

performed, if needed. Such a repair, adjustment or 

replacement is done simultaneously with inspection. In this 

case, the task is only to select optimal value of Inspection 

(adjustment/repair/replacement) interval.  

The rest of the article is organized as follows: Various 

techniques to define deterioration parameters are considered in 

Chapter 2. In Chapter 3, we present how the Cross-Entropy 

method can be applied to search required Weibull parameters. 

The task of selection of the optimal value of replacement 

interval is considered in Chapter 4. In Chapter 5 we illustrate 

the proposed technique using some numerical examples. 

Chapter 6 describes the PHM approach to the problem. Then, 

short conclusions are presented in Chapter 7. 

2 DEFINITION OF DISTRIBUTION PARAMETERS 

We consider a replaceable item of an aircraft and assume 
that the future operating and environmental conditions will 

remain the same. Both corrective and preventive maintenance 

bring the system to an "as good as new" state. During 

inspection a replacement is performed.  

Simple but typical example of this situation is checking 
the tire pressure in a car. Usually some restoration (in our 

example - adding some pressure to keep it at defined level) is 

performed simultaneously with checking.  

Let’s consider a system with failure rate that follows a 

Weibull Distribution with parameters θ and β, i.e. the 

probability, that failure time is less than t, is distributed 

according to Weibull Cumulative Distribution Function: 
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where θ is scale parameter and β is shape parameter. The 

corresponding Probability Density Function is: 

  (2) 

Periodically the system is removed from operation for 

inspection/replacement. Replacement Interval (time between 
replacements) is a Control Parameter and it may be obtained 

by means of optimization. The Optimization Criterion is Total 

Cost. So, the first task is to define Weibull parameters by 

means of processing the available statistics. If statistics 

contain only the times of failures, the appropriate method is 

Least Squares applied to so called Weibull probability paper.  

Since data are often inaccurate, it is important to try and 

extract any information we can from poorer data. Failure 

events may be grouped, so an exact time of a failure is 

unknown, rather a failure interval is given, or components may 

be “suspended” so that they are removed from service at a 

certain time although they did not fail. This information, if 

used in conjunction with accurate data, is very helpful in 

improving our estimates of the failure distribution parameters 

and verifying the shape of the distribution.  

Typically the Maximum Likelihood Estimate (MLE) is 

used when we have mixed data including inaccurate failure 

times. The MLE uses a proposed distribution to model both 

failures at known times and failures over an interval. It models 

suspended components using the probability that they have not 
failed at the suspension time. In this way it is possible to make 

use of all the data, even if the number of accurate data points 

is small. Expressions for Negative Logarithmic Likelihood 

(NLL), depending of the type of data, are as follows: 

• For single failure i with failure time of TFi we get NLLi 

= - ln(f(TFi)); 

• For single censored event i with censored time of TCi we 

get NLLi = - ln(1 - F(TCi) ); 

• For single interval data i with interval times of 

{TLi…THi} we get NLLi= - ln( F(THi - F(TLi) ); 

• For grouped data of amount q the NLL = q NLLi 

Full Negative Logarithmic Likelihood is the sum of NLL 

of single and grouped data. Our goal is to search for values of 

parameters θ and β for which Full Negative Logarithmic 

Likelihood will be minimal. 

3 CROSS-ENTROPY ALGORITHM FOR GLOBAL 

OPTIMIZATION   

Global Optimization of non-linear function is a common 

task of many practical problems. For these numerous cases we 

have to look for parameters by means of non-linear and non-
convex, global optimization. Our task is to find the value of Z 

that provides min G(Z)  under constraints  
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where:  

• Z = {z[1],…,z[j],…z[K]} is a set (vector) of parameters 

• K is amount of parameters 

• Lowj is Low Boundary of Parameter j value (j = 1…K)                            

• Highj is High Boundary of Parameter j value (j = 1…K)                               

• G is a Target Function (analytical-form or, perhaps, table 

or even algorithm-calculated-form), dependent of vector 

Z.  

For Global Optimization Task, we propose to use one of 

the RANDOM SEARCH oriented methods – Cross-Entropy 

Optimization [4, 5]. It is a relatively new random-search 
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oriented approach (for example, in comparison with Genetic 

Algorithm, implemented as Toolbox on Matlab), but it 

provides very good results for several similar tasks [6, 12, 13]. 

The method derives its name from the cross-entropy (or 

Kullback-Leibler) distance - a well-known measure of 
"information", which has been successfully employed in 

diverse fields of engineering and science, and in particular in 

neural computation, for about half a century. Initially the 

Cross-Entropy method was developed for discrete 

optimization, but later it was successfully extended for 

continuous optimization [4]. The Cross-Entropy method is an 

iterative method, which involves the following two phases:  

• Generation of a sample of random data. Size of this data 

is 500 - 5000 random vectors on each algorithm step, 

amount of steps is 50 - 100. Generation is performed 

according to a specified random mechanism. 

• Updating the parameters of the random mechanism, on 

the basis of the data, in order to produce a 'better" sample 

in the next iteration. Choice of these parameters is 

performed by means of maximization of Cross-Entropy 

function. This optimization is performed on each 

algorithm step, but differently from global optimization, 

this optimization is usually performed VERY EASILY 

and QUICKLY, because Cross-Entropy function is 

convex. 

In the first phase we generate sample Z1 …ZV …ZN, 

which is the size of N different parameter sets. This generation 

is performed according to common Probability Density 

Function F(Z) for parameter vector Z, which was calculated 

on the previous step of the algorithm. 

For each v from N (v = 1,…,N) generated parameter 

vectors the value of Target Function is calculated. Then best 

NEL (NEL = 10,…,50) parameter vectors Z from all N 

generated are selected from full sample – it is named ELITE 

part. This selection is performed according to Target Function 
values, i.e. parameter vector with number 1 will have 

minimum value of Target Function, parameter vector with 

number 2 will have second value of Target Function, and 

parameter vector with number NEL will have NEL ordered 

value of Target Function.  

After this, the algorithm calculates new values of the 
Probability Density Function F(Z) – it is the second phase of 

each algorithm step.  

 The aim of the use of the new function F(Z) is to 

maximize Cross-Entropy Function. In the general case the 

Cross-Entropy Function is the following: 
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which is Kullback-Leibler probability measure of distance 

between different Probability Density Functions. In this 

formula ZV – value of generated parameter vector on the v-th 

set of Elite part of current sample.  

So, first we have to choose a type of PDF to generate 

random parameter vectors Z. For continuous optimization we 

can use the following types of PDF: 

• Beta PDF.  

• Normal PDF.Double-Exponential PDF, etc. 

Using Normal PDF F(Z) is advantageous, since in 

contrast to Beta and Double-Exponential PDFs, the Normal 

PDF allows analytical solution. Other types of PDF require 

numerical solution. Parameters of Normal PDF (Mean and 

Covariance Matrix) of function F(Z) can be calculated 

analytically: 
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We have to prevent too early occurrences of the PDF 

parameter, because in this case optimization is stopped 

wrongly (PDF will be simply Dirak function!). For this 

purpose, instead of a simple choice by means of independent 

current step result analysis, we will use smoothed updating 

procedure: 

• Mean[j](t) =  Meanprel [j](t) + (1 - )Mean[j](t-1)  (7) 

where: 

Meanprel [j](t) – preliminary value of Mean[j], which we 

had got on current step t, i.e. before smoothed updating, 

Mean[j](t) – final value of Mean[j], which we had got on 

current step t, i.e. after smoothed updating, 

Mean[j] (t-1) – final value of Mean[j], which we had got 

on previously step (t-1), 

 – smoothing parameter for Mean updating, 

t – step number 

• Cov[i, j](t) = (t)Covprel [i, j](t) + (1–(t))Cov[i, j](t–1),  

  (8) 

• (t) =  – ( (1 – 1/t), (9) 

where: 

Covprel [i, j](t) – preliminary value of Covariance[i, j], 

which we had got on the current step t, i.e. before smoothed 

updating, 

Cov[i, j](t) – final value of Covariance[i, j], which we had 

got on the current step t, i.e. after smoothed updating, 

Cov[i, j](t-1) – final value of Covariance[i, j], which we 

had got on previous step (t-1), 

  and  – smoothing parameters for Covariance updating. 

As seen, for PDF parameter Mean we use fixed 

smoothing parameter  and for PDF parameter Covariance we 

use dynamic (dependent on step number) smoothing parameter 

(t). 

4 MODEL FOR REPLACEMENT INTERVAL SELECTION 

To select optimal replacement interval, we should 
calculate Total Cost depending on the Replacement Interval 

value. Input data for this calculation are the following: 

• v - Assigned Replacement Interval 

• θ and β – Weibull distribution scale and shape parameters 



4 

 

for the analyzed aircraft item  

• p enC – Penalty per hour for the "replacement duration 

more than some predefined value" (for Corrective 

Maintenance only) 

• p enP – Probability of the "replacement duration more than 

some predefined value" (for Corrective Maintenance 

only) 

• p enT – Average delay for the "replacement duration more 

than some predefined value" (for Corrective Maintenance 

only) 

• Cr – Labor and Material Cost per single replacement 

• T – Operating Time 

      ,CAPTCPCAPCostTotal rrpmpenpenpenrrcm 

 (10) 
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total amount of replacements during Operating Time 

Pcm =   (12) 

Probability of Corrective Maintenance 

Ppm =     (13) 

Probability of Preventive Maintenance 

     W =    (14) 

Mean Working Time before Corrective Maintenance 

The task is to select Optimal Replacement Interval (v) so 

that Total Cost will be minimum.  

5 CASE STUDY 

Consider one of the Aircraft Items with the following 

input parameters: 

;000,43C;000,22C penr   

Input statistics contain both Failure Times (59 events) and 

Suspended Times (180 events). The data have been analyzed 

and the parameters of the Weibull distribution have been 

estimated:  

• β = 2.77; θ = 25,903 (hours) ; 

Based on input statistics, also the following parameters 

were defined: 

• p enP  = 20/59; p enT  = 125/60 (hours) 

The following output results were obtained: 

• Optimal Replacement Interval = 19,090 hours; Percentage 

replaced preventively = 65% 

The graph below presents the Total Annual Cost for the 

analyzed item, including maintenance costs and downtime 

costs. This Total Annual Cost is a function of a replacement 

interval. The axes of the graphs are: 

• Horizontal - Replacement interval (x10,000 hours) 

• Vertical - Total Annual Cost  

 

Figure 1. Total Cost VS Replacement Interval  

 

The graphs above demonstrate high sensitivity to 

replacement interval length in the area of the optimum value. 
6 PHM APPROACH 

As mentioned in Chapter 1, two alternatives are possible 
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for Preventive Maintenance planning – Traditional approach 

and PHM approach. 

Traditional approach is described above for one practical 

case, assuming Weibull distribution for the whole PUO 

FAMILY - family of the products under observation (PUO) - 

and optimizing the Replacement Interval after the Weibull 

distribution parameters estimation. 

PHM approach is dealing with every individual PUO 

separately taking into account its critical characteristics 

measurements.  

It is evident that PHM approach may be more effective, 
because it supposes tailoring of the individual maintenance 

procedure for each PUO. But it is not always possible. Two 

conditions are necessary for using PHM approach: 

• Devices should have some parameters (or at least one 

parameter), which can describe aging or deterioration of 

the device; 

• A sensor(s) should exist in order to measure and 

investigate the trend of the parameter(s) over time. 

For example, for aircraft items like a “window” the PHM 

approach is hardly applicable, because for a window such 

critical parameter(s) probably does not exist.  

On the other hand, for the aircraft item "engine" PHM is 

completely applicable, see [9, 10] where a set of the 24 aircraft 

engine indicators was applied, which allows to consider aging 

of one separately taken single item.  

The basic tasks of the PHM are Failure Prognostics 
(performed before a failure occurs) and Failure Diagnostics 

(performed after failure occurs). Prognostic systems are 

expected to provide predictive information about the 

Remaining Useful Life (RUL) of the PUO. For the purpose of 

PM optimization, the traditional prognostics’ goal of the RUL 

value calculation (prediction), based on historical data, is very 

appropriate. A lot of methods, based on “supervised learning” 

were proposed in recent years for more accurate RUL 

prediction and prognostic of time-to-failure. Different 

strategies, used for RUL estimation, including Similarity-
based Prognostics [1], Artificial Neural Networks [2, 3] and 

others, have been explored extensively for equipment fault 

prognostics. These methods take into account possible real life 

loss functions (scores, penalties, output criteria) for the 

prediction inaccuracy (see, e.g., [7-8, 1, 3, 12-13]). These Loss 

functions may be different in shape and amplitude, with 

symmetrical or asymmetrical profile, etc., approximating the 

losses which may happen in reality. For example, in the IEEE 

PHM 2012 Prognostic Challenge [13], the score of the single 

item RUL prediction was defined as exponential penalty to the 

relative prediction error and the score of an algorithm was 

defined as the overall score for all Products under Observation 
RUL prediction. As written in [13], "Underestimates and 

overestimates have not be considered in the same manner: 

good performance of estimates related to early predictions of 

RUL, with deduction to early removal, and more severe 

deductions for RUL estimates that exceeded actual component 

RUL". Nevertheless, in the PHM-2008 Prognostics Data 

Challenge [7-8, 1] the score of the single RUL prediction was 

defined as exponential penalty regarded to the absolute 

prediction error. 

Thus, for the prognostic determination of the optimal 

Inspection interval for each individual Item, based on the RUL 

calculation (based on regression), the well-known approach 

for the stated Loss function (score) should be used and the 

optimal value should be chosen, minimizing the overall losses.  

As seen on the Figure 2, usually the experimental data are 

contaminated with significant measurement noise.  

 

Figure 2. Typical plot of the trendable parameter behavior – before and after smoothing. 

According to the behaviour of this parameter it is possible 

to produce a "fitting by monotone curve" and later on perform 

the multi-parameter analysis using smoothed data rather than 

the original.  

So, the first task is de-noising of input statistics to get 

monotonic function as a better representation of device 
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degradation process. Monotonic Fitting is performed by non-

linear regression methods which use different types of 

smoothed functions, like: polynomial functions, exponential 

functions, etc. For polynomial smoothing the following 

function is used to fit the measurement series:  

            
CBtA)t(F  .  (15) 

For exponential smoothing the following function is used: 

      
CtBeA)t(F  .  (16) 

where t is the age of the unit, is fitted measurement 

value.  

Therefore, the smoothed function has 3 parameters. These 

parameters can be determined using least-square method based 

on the actual measurement time-series, or using relatively new 

random search-oriented approach - Cross-Entropy Algorithm 

[4, 5] - which provides very good results in getting the optimal 

values for those 3 parameters. Initially the Cross-Entropy 

method was developed for discrete optimization, but later was 

successfully extended for continuous optimization. Using the 

Cross-Entropy method, one can find the optimal prognostic 

value of the Inspection interval, minimizing possible losses.    

But it seems that in PM planning case it is not necessary 

to estimate the “exact” moment of optimal PM performance, 

rather it is important to understand whether or not the current 

PUO (actually, its lifetime) achieved the critical zone? In other 

words, the question is not “how long is RUL of the PUO”, but 
“Is the RUL less that the pre-defined Critical Value (Critical 

RUL) or not”?  

To solve this problem, the Classification Approach rather 

than Regression Approach was proposed [11]: to recognize 

entering the critical zone.  

In general, Classification Approach is more applicable 

for recognition tasks. But on the other hand, Classification 

methods have very serious disadvantage: they provide a binary 

answer “yes/no” only (whether or not the current object 

belongs to the "positive" or to the "negative" class?) and do 

not consider more detailed information, such as real error 
magnitude, in our case - distance of the object from the 

Critical point. For Critical Zone Recognition it is impossible 

to use criteria, proposed in [7-8, 13], because there is no 

predicted RUL value - output will be only “the recognized 

class” (positive or negative in respect to critical zone). 

Traditional classification approach deals only with labels 

(binary or multi-values) and usually doesn't consider 

quantitative parameters, such as RUL. So, how one could take 

into account the Loss function such as in the chapters 4 and 5? 

Indeed, how could we take into account the asymmetry of 

penalty for underestimates and overestimates, distance from 
the real value of the failure time, so necessary for PM interval 

determination? 

To solve this problem, a mixed, combined approach was 

developed – to use "classification-based methods" (and their 

advantages) concurrently with "regression-based criteria" 

(with their advantages) [11].  

Recognition tasks usually use different criteria (Accuracy, 

Sensitivity, Specificity, Precision, Recall, F1 measure, etc.) 

based on primary output parameters: 

• #TP (true positives) is amount of positive examples, 

correctly classified. 

• #TN (true negatives) is amount of negative examples, 

correctly classified. 

• #FP (false positives) is number of negative examples, 

incorrectly classified as positive; this is amount of Type_1 

Errors to include "garbage" (determined as a positive 

instance when it is not). 

• #FN (False Negatives) is number of positive examples 

incorrectly classified as negative; this is amount of 

Type_2 Errors, i.e. "loss" errors of really positive 

instances. 

Usually, the performance of a classifier is measured in 

terms of accuracy based on the comparison of the classifiers of 

the true prediction: 

Accuracy = (#TP + #TN)/( (#TP + #TN + #FP + #FN)

 (17) 

But this and other traditional classification criteria do not 

take into account both asymmetric scoring functions (which 

are preferred for early prediction) and different penalty for 

different distance of real RUL value from critical zone. To 

take into account asymmetric scoring functions, it is possible 

to use the following simple measure: 

Simple_Score = #FP +2* #FN (18) 

We should modify regression criteria to consider features 

of recognition task, e.g. modified criteria from [7] to evaluate 

item number “i” as following: 
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 Full_Score is defined as  or

. Using Cross-Validation 

instrument one should select values of control 

parameters to minimize Full_Score. 

In [11] the case of trendability statistics with large amount 

of units in learning data set is described, and the classification-

based model of the data-driven prognostics methods is 
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compared with the regression-based model. The following 

table, constructed for the PHM application [11] experimental 

result using the NASA Ames Research Center engines data, 

shows that classification-based model produces better critical 

zone prediction estimations compared to regression-based 
model. To check stability of the conclusions, a comparison 

between SVR and SVS has been performed independently 3 

times – according to criteria Simple Score, Linear Score and 

Complex Score. First, the 2-fold Cross-Validation was made 

independently for these criteria – to select optimal values of 

control parameters, and after this, based on the selected 

values, output parameters for the Test Data Set have been 

calculated. The output results are summarized on the Table I: 

 

Output Parameters 

Type of Score 

Simple Score Linear Score Complex Score 

SVR SVC SVR SVC SVR SVC 

#FP 1 1 1 1 1 1 

#FN 5 4 5 5 5 4 

Mean Relat. Error (%) 15.6 - 14.7 - 14.7 - 

Accuracy (%) - 95 - 94 - 95 

SCORE 11 9 15 7 1.00 0.19 

 

Table I. 

 

The proposed approach to critical zone recognition was 

validated using the monitoring data, collected by NASA[8]. 

An experimental result shows that classification-based model 

produces better critical zone prediction estimations than a 

regression-based model. 

7 CONCLUSION 

In this paper, we analyzed replacement-based preventive 

maintenance in operational aircraft items, in which two types 

of maintenance are performed – Corrective Maintenance and 

Preventive Maintenance. The paper outlines the advantage of 

replacement-based maintenance over pure corrective 

maintenance. It is explained how to obtain the optimal value 

of replacement interval minimizing expected total cost for an 
assumed set of parameter values. Finally, it has been shown 

how to get the optimal decision about PM performance for 

every single individual item (PHM approach) using 

Classification Machine instead of Regression one. 

Clearly, PHM approach and "Condition Based 
Maintenance" strategy, based on it, are much more efficient 

than the traditional approach to PM, applying the same 

maintenance interval to all products of the same type. Thus, if 

the monitoring of the physical condition of individual PUO is 

feasible, PHM approach will produce better results. If PHM 

approach is used, it is presented and recommended in this 

paper to use Classification methodology for recognition of 

entering the Critical Zone, instead of classical Regression 

approach. 

If the monitoring of the physical condition of individual 

PUO is unfeasible (if there are no appropriate sensors or data 

collection means), the only remaining possibility is the 

traditional Preventive Maintenance approach with one 

(optimal) replacement/inspection interval for all devices of the 

same type. In this case one has to estimate the PUO Family 

time-to-failure distribution. The General multimodal 

optimization method “Cross Entropy” is presented, illustrated 

and recommended as a universal approach. 
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